1,930 research outputs found

    Optimization of exposure time division for wide field observations

    Full text link
    The optical observations of wide fields of view encounter the problem of selection of best exposure time. As there are usually plenty of objects observed simultaneously, the quality of photometry of the brightest ones is always better than of the dimmer ones. Frequently all of them are equally interesting for the astronomers and thus it is desired to have all of them measured with the highest possible accuracy. In this paper we present a novel optimization algorithm dedicated for the division of exposure time into sub-exposures, which allows to perform photometry with more balanced noise budget. Thanks to the proposed technique, the photometric precision of dimmer objects is increased at the expense of the measurement fidelity of the brightest ones. We tested the method on real observations using two telescope setups demonstrating its usefulness and good agreement with the theoretical expectations. The main application of our approach is a wide range of sky surveys, including the ones performed by the space telescopes. The method can be applied for planning virtually any photometric observations, in which the objects of interest show a wide range of magnitudes.Comment: 18 pages, 5 figure

    Bad pixel modified interpolation for astronomical images

    Full text link
    We present a new method of interpolation for the pixel brightness estimation in astronomical images. Our new method is simple and easily implementable. We show the comparison of this method with the widely used linear interpolation and other interpolation algorithms using one thousand astronomical images obtained from the Sloan Digital Sky Survey. The comparison shows that our method improves bad pixels brightness estimation with four times lower mean error than the presently most popular linear interpolation and has a better performance than any other examined method. The presented idea is flexible and can be also applied to presently used and future interpolation methods. The proposed method is especially useful for large sky surveys image reduction but can be also applied to single image correction.Comment: 16 pages, 10 figures. Printed in PASP, September 201

    The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Full text link
    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.Comment: Received: 11 November 2017, revision received: 31 January 2018, accepted: 31 January 201

    Beyond the current noise limit in imaging through turbulent medium

    Full text link
    Shift-and-add is an approach employed to mitigate the phenomenon of resolution degradation in images acquired through a turbulent medium. Using this technique, a large number of consecutive short exposures is registered below the coherence time of the atmosphere or other blurring medium. The acquired images are shifted to the position of the brightest speckle and stacked together to obtain high-resolution and high signal-to-noise frame. In this paper we present a highly efficient method for determination of frames shifts, even if in a single frame the object cannot be distinguished from the background noise. The technique utilizes our custom genetic algorithm, which iteratively evolves a set of image shifts. We used the maximal energy of stacked images as an objective function for shifts estimation and validate the efficiency of the method on simulated and real images of simple and complex sources. Obtained results confirmed, that our proposed method allows for the recovery of spatial distribution of objects even only 2% brighter than their background. The presented approach extends significantly current limits of image reconstruction with the use of shift-and-add method. The applications of our algorithm include both the optical and the infrared imaging. Our method may be also employed as a digital image stabilizer in extremely low light level conditions in professional and consumer applications.Comment: 8 pages, 4 figure

    Quantum Telescopes: feasibility and constrains

    Full text link
    Quantum Telescope is a recent idea aimed at beating the diffraction limit of spaceborne telescopes and possibly also other distant target imaging systems. There is no agreement yet on the best setup of such devices, but some configurations have been already proposed. In this Letter we characterize the predicted performance of Quantum Telescopes and their possible limitations. Our extensive simulations confirm that the presented model of such instruments is feasible and the device can provide considerable gains in the angular resolution of imaging in the UV, optical and infrared bands. We argue that it is generally possible to construct and manufacture such instruments using the latest or soon to be available technology. We refer to the latest literature to discuss the feasibility of the proposed QT system design.Comment: Optics Letters - published after major revisio

    Observational Constraints on the Generalized Chaplygin Gas

    Full text link
    In this paper we study a quintessence cosmological model in which the dark energy component is considered to be the Generalized Chaplygin Gas and the curvature of the three-geometry is taken into account. Two parameters characterize this sort of fluid, the ν\nu and the α\alpha parameters. We use different astronomical data for restricting these parameters. It is shown that the constraint να\nu \lesssim \alpha agrees enough well with the astronomical observations.Comment: Accepted by IJMPD; 18 pages; 10 Figure

    Dark energy FRW cosmology - dynamical system reconstruction

    Full text link
    We develop a simple method of dark energy reconstruction using a geometrical form of the luminosity-distance relation. In this method the FRW dynamical system with dark energy is reconstructed instead of the equation of state parameter. We give several examples which illustrate the usefulness of our method in fitting the redshift transition from the decelerating to accelerating phase as the value of the Hubble function at the transition.Comment: Talk presented at Spanish Relativity Meeting 2007, Puerto de la Cruz, Tenerife, Spain, 10-14 September 200

    Dusty Universe viewed by AKARI far infrared detector

    Full text link
    We present the results of the analysis of multiwavelength Spectral Energy Distributions (SEDs) of far-infrared galaxies detected in the AKARI Deep Field-South (ADF--S) Survey. The analysis uses a carefully selected sample of 186 sources detected at the 90 μ\mum AKARI band, identified as galaxies with cross-identification in public catalogues. For sources without known spectroscopic redshifts, we estimate photometric redshifts after a test of two independent methods: one based on using mainly the optical -- mid infrared range, and one based on the whole range of ultraviolet -- far infrared data. We observe a vast improvement in the estimation of photometric redshifts when far infrared data are included, compared with an approach based mainly on the optical -- mid infrared range. We discuss the physical properties of our far-infrared-selected sample. We conclude that this sample consists mostly of rich in dust and young stars nearby galaxies, and, furthermore, that almost 25% of these sources are (Ultra)Luminous Infrared Galaxies. Average SEDs normalized at 90 μ\mum for normal galaxies (138 sources), LIRGs (30 sources), and ULIRGs (18 galaxies) a the significant shift in the peak wavelength of the dust emission, and an increasing ratio between their bolometric and dust luminosities which varies from 0.39 to 0.73.Comment: 8 pages, 7 figures, published in Earth, Planets and Spac

    Properties of star forming galaxies in AKARI Deep Field-South

    Get PDF
    The main aim of this work is the characterization of physical properties of galaxies detected in the far infrared (FIR) in the AKARI Deep Field-South (ADF-S) survey. Starting from a catalog of the 1 000 brightest ADF-S sources in the WIDE-S (90μ\mum) AKARI band, we constructed a subsample of galaxies with spectral coverage from the ultraviolet to the far infrared. We then analyzed the multiwavelength properties of this 90μ\mum selected sample of galaxies. For galaxies without known spectroscopic redshifts we computed photometric redshifts using the codes Photometric Analysis for Redshift Estimate (Le PHARE) and Code Investigating GALaxy Emission (CIGALE), tested these photometric redshifts using spectroscopic redshifts, and compared the performances of both codes. To test the reliability of parameters obtained by fitting spectral energy distributions, a mock cataloge was generated. We built a large multiwavelength catalog of more than 500 ADF-S galaxies. We successfully fitted Spectral Energy Distributions of 186 galaxies with χmin2<4\rm{\chi^2_{min}<4}, and analyzed the output parameters of the fits. We conclude that our sample consists mostly of nearby actively star-forming galaxies, and all our galaxies have a relatively high metallicity. We estimated photometric redshifts for 113 galaxies from the whole ADF-S sample. Comparing the performance of Le PHARE and CIGALE, we found that CIGALE gives more reliable redshift estimates for our galaxies, which implies that including the IR photometry allows for substantial improvement of photometric redshift estimation.Comment: 16 pages, 20 figures, accepted for publication in A&

    Cosmic acceleration from modified gravity with Palatini formalism

    Full text link
    We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models employ Starobinsky's term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.Comment: 32 pages, jcappub style, 28 figures, final improved version, to be published in JCA
    corecore